Zukünftige Energie- und Industriesysteme
Refine
Year of Publication
Document Type
- Contribution to Periodical (401)
- Report (345)
- Peer-Reviewed Article (230)
- Part of a Book (214)
- Conference Object (137)
- Working Paper (58)
- Doctoral Thesis (22)
- Book (17)
- Lecture (3)
- Master Thesis (3)
Language
Division
Einige Klimaneutralitätsszenarien für Deutschland nehmen an, dass zukünftig "unvermeidbares" CO2, z. B. aus der Zementproduktion, als Kohlenstoffquelle für die inländische Herstellung von Kraftstoffen oder chemischen Grundstoffen genutzt wird. In diesem Artikel wird dargelegt, warum eine solche CO2-Nutzung verglichen mit einem alternativen Pfad einer geologischen Speicherung des CO2 und einem gleichzeitigen Import "grüner" Kraft- und Grundstoffe zumindest aus energetischer Sicht nachteilig erscheint.
In den letzten Jahren wurden zahlreiche Optimierungsmodelle entwickelt, um die Bewertung von Strategien für die zukünftige Entwicklung von Energieversorgungssystemen wissenschaftlich zu unterstützen. Analysen zur zukünftigen Ausgestaltung des Energiesystems und seines Betriebs, die auf der Anwendung dieser Modelle basieren, kommen jedoch meist zu unterschiedlichen Ergebnissen. Dies liegt zum einen an unterschiedlichen Annahmen in den Modelleingangsdaten, zum anderen an Unterschieden in den Modellformulierungen. Modelle zur Analyse nationaler Energiewendeszenarien unterscheiden sich in der Regel in ihrer räumlichen und zeitlichen Granularität sowie in ihrem technologischen Umfang und Detailgrad. Begrenzte Rechenkapazitäten machen einen Kompromiss zwischen diesen Dimensionen erforderlich. Eine hohe räumliche und/oder zeitliche Granularität geht somit mit einer starken Vereinfachung der Darstellung von Technologieeigenschaften einher. Diese Vereinfachungen können von Modell zu Modell unterschiedlich sein.
Vor dem Hintergrund dieser Problemstellung lag der Fokus des Projekts FlexMex auf der Bewertung des Einflusses der Modelleigenschaften auf die berechneten Ergebnisse. Um datenbedingte von modellbedingten Unterschieden zu trennen wurde somit ein einheitlicher Satz an Eingangsparametern entwickelt und in allen Modellen verwendet. Die Szenariovorgaben schließen dabei die techno- ökonomischen Technologieparameter, Brennstoff- und CO2-Zertifikatspreise, Annahmen zur Strom-, Wärme- und Wasserstoffnachfrage, das Dargebot der Stromerzeugung aus erneuerbarer Energie (EE) sowie die Potenziale von Lastmanagement und weiteren Flexibilitätsoptionen ein. Zudem wurden in den Szenarien ohne modellendogene Ausbauoptimierung auch die installierten Kapazitäten der betrachteten Energiewandler, -speicher und -netze harmonisiert. Die Ausnahme bildeten hier Untersuchungen mit Betrachtung einer modellendogenen Optimierung der Anlagenkapazitäten. Gemäß dem Fokus auf dem stündlichen Einsatz von Flexibilitätsoptionen wurden im Modellvergleich überwiegend Versorgungssysteme mit hohen Erzeugungsanteilen fluktuierender erneuerbarer Stromerzeugung aus Wind und Photovoltaik betrachtet.
Der Modellvergleich setzte sich aus zwei, aufeinander aufbauenden Teilen zusammen. Im ersten Teil des Vergleichs stand die detaillierte Analyse der Auswirkung von Unterschieden in den Modellierungsansätzen und der Abbildung einzelner Technologien im Vordergrund. Dafür wurden die betrachteten Flexibilitätsoptionen jeweils einzeln in einem stark vereinfachten System betrachtet. Dieses setzt sich zusammen aus fluktuierender Erzeugung aus Windenergie und Photovoltaik, jeweils mit der Option der Abregelung und der zu analysierenden alternativen Flexibilitätsoptionen. Aufgrund der Vielfalt der betrachteten Optionen - Stromspeicher, Stromübertragungsnetze, Lastmanagement und verschiedene Technologien der flexiblen Sektorenkopplung - ergeben sich daraus insgesamt 22 Modellläufen. Da sich die Unterschiede in der Technologieabbildung auf jeweils eine Technologie beschränken, können Abweichungen in den Ergebnissen diesen direkt zugeordnet werden.
Im zweiten Teil des Modellvergleichs wurden alle Flexibilitätsoptionen gemeinsam und folglich auch deren vielfältige Wechselwirkungen betrachtet. Im Rahmen der Betrachtung von 16 Testfällen wurde die sich aus der Modellwahl ergebende Unsicherheit in den Ergebnissen quantifiziert. Diese Testfälle unterscheiden sich im Ausbau von Windkraft- und Photovoltaikanlagen, in der Verfügbarkeit verschiedener Flexibilitätsoptionen, sowie in der Berücksichtigung eines endogenen Zubaus dieser Flexibilitätsoptionen.
Die chemische Industrie ist auch für die Antwerpen-Rotterdam-Rhein-Ruhr-Region (engl. Antwerp-Rotterdam-Rhine-Ruhr-Area, kurz ARRRA) von besonderer Bedeutung, die mehrere große petrochemische Cluster in Deutschland, den Niederlanden und Belgien mit komplex vernetzten Produktionsketten beherbergt. Bei der Umsetzung der Klimaziele stehen diese Regionen vor bedeutenden Veränderungen und haben zugleich die Chance, sich als Vorreiter der Industrietransformation zu positionieren. Dafür müssen erfolgreiche Strategien für den Wandel identifiziert und angewendet werden.
In den letzten Jahren wurden zahlreiche Szenarioanalysen und Roadmaps veröffentlicht, in denen Entwicklungspfade für die chemische Industrie im Einklang mit nationalen und internationalen Klimazielen aufgezeigt werden. Diese können eine Darstellung von technologischen Optionen, wichtigen Voraussetzungen, besonderen Herausforderungen sowie bedeutsamen Chancen und zeitlichen Entwicklungen beinhalten. Die vorliegende Metaanalyse fasst die Ergebnisse einige der aktuellsten Arbeiten auf nationaler, europäischer und globaler Ebene zusammen und vergleicht diese kritisch miteinander. Da das Kernziel der vorliegenden Analyse darin besteht, die verschiedenen strategischen Optionen und Entwicklungspfade für Deutschland und die ARRRA zu untersuchen, liegt der Schwerpunkt der Arbeit auf Publikationen mit Fokus Deutschland, den Niederlanden und Belgien. Dabei wird sowohl ein quantitativer als auch ein qualitativer Ansatz verfolgt, der die Ressourcen- und Produktionsmengen, die relative Bedeutung verschiedener Emissionsminderungsstrategien sowie auch politische Empfehlungen und andere wichtige Rahmenbedingungen berücksichtigt. Der Fokus liegt dabei auf Strategien für den Einsatz alternativer nicht-fossiler Feedstocks und die Minderung damit verbundener Emissionen.
22 years are left until the German target for climate neutrality should be reached. For the industrial sector, this implies a fundamental change and an acceleration of emission reduction, as from 2000 to 2021 the sector has reduced its greenhouse gas (GHG) emissions by only 13% (ERK, 2022). For the large structures, plants and assets that are characteristic for the energy intensive industrial sectors, the timespan implies no room for delay. One sector facing particular challenges is the chemical industry. Here, fossil resources are used not only for energetic purposes but for feedstock as well, in the petrochemical industry in particular. The efforts made in the petrochemical sector thereby not only affects the sectors own emissions, but the chemicals value chain at large, including the management of end-of-life products. The dependency on energetic resources for material use also means that there is a particular connection from the chemical industry to the energy system at large, which also entails special consideration.
The chemical industry also has a particular relevance to the Antwerp-Rotterdam-Rhine-Ruhr-Area (ARRRA) which hosts several large petrochemical clusters in Germany as well as the Netherlands and Belgium, with complexly interlinked production chains. In reaching the climate targets, these regions especially face significant changes and may have the opportunity to position themselves as frontrunners for industrial transformation. That is, if a successful strategy can be found.
In the recent years, numerous scenario analyses and roadmaps have been released drawing out pathways for chemical industries to develop in line with national and international climate targets. This can entail mapping of technological options, important prerequisites, particular challenges as well as important opportunities and timeframes. This meta-analysis summarizes and compares the findings of some of the most recent previous works at the national, European and global level. As the goal is to investigate the various strategic options and development paths for Germany and the ARRRA, it has a particular focus on roadmaps for Germany, the Netherlands and Belgium. It takes a quantitative as well as qualitative approach, looking both at resource and production volumes, different emission reduction strategies relative importance, as well as policy recommendations and other important framework conditions. A particular focus is put on the use of non-fossil feedstocks to reduce emissions.