Kreislaufwirtschaft
Refine
Document Type
- Report (74)
- Contribution to Periodical (41)
- Peer-Reviewed Article (31)
- Working Paper (16)
- Part of a Book (13)
- Conference Object (4)
- Doctoral Thesis (3)
- Book (1)
The ecological challenges of this decade have been clearly identified. The pressure of problems is increasing drastically; progress in climate protection or the preservation of biodiversity is insufficient. Little time is left to act. In consequence, we can only achieve and permanently secure social and environmental prosperity through far-reaching changes in economy and society.
As a socio-technical innovation, digitalisation can realise its full ecological potential above all where it helps to profoundly change today's lifestyles, consumption patterns, and economic practices with a clear commitment to sustainability. As the most urgent design task of the 21st century, it is important to put digitalisation's enormous creative power at the service of the great transformation. The "great transformation" refers to the comprehensive restructuring of technology, the economy, and society in order to deal with the social and ecological challenges of the 21st century. This is a task for state action in terms of both regulatory policy orientation and facilitating collective processes of change - new tasks call for new governance.
A digital-ecological statecraft is the indispensable prerequisite for effective state action to shape the social-ecological digital transformation. Using the example of the platform economy, we explore challenges, starting points, and (policy) measures.
Ziel des Projektes war es, eine ressourceneffiziente Kreislauschließung in der Kunststoffwirtschaft durch verschiedene digitale Software und Sensorlösungen zu ermöglichen. Das Projekt war in folgende Arbeitspakete gegliedert:
Arbeitspaket 1: Bestimmung der Ist-Situation. Arbeitspaket 2.1: Entwicklung innovativer Prozessmesstechnik. Arbeitspaket 2.2: F&E zu einer digitalen Applikation. Arbeitspaket 2.3: Konzeption eines Wertschöpfungsnetzwerkes. Arbeitspaket 3.1: Erprobung und Optimierung. Arbeitspaket 3.1: Nachhaltigkeitsbewertung. Arbeitspaket 4: Aktivierung und Dissemination der Ergebnisse. Arbeitspaket 5: Kommunikation. Arbeitspaket 6: Projektmanagement.
Die Projekt-Ergebnisse werden im vorliegenden Abschlussbericht, gegliedert in diese Arbeitspakete, vorgestellt.
Ob die Rückführung von industriellen und gewerblichen Sekundärkunststoffen, das heißt von Abfällen bzw. von bereits wiederaufbereiteten Kunststoffrezyklaten, gelingen kann, ist von mehreren Faktoren wie insbesondere den spezifischen Materialeigenschaften, den Mengen, in denen sie anfallen, den aktuellen Marktpreisen (auch gegenüber Neuware) und auch der räumlichen Nähe von Sortier- bzw. Wiederaufbereitungsinfrastruktur abhängig. Trotz eigentlich guter Voraussetzungen für ein werkstoffliches Recycling, gelangen einzelne in Unternehmen anfallende Abfallchargen häufig in eine thermische Verwertung, weil sich ein Recycling wirtschaftlich nicht lohnt. Grund hierfür ist unter anderem, dass der Informationsaustausch zu den oben genannten Faktoren für Unternehmen häufig noch sehr mangelhaft ist.
Aktuell in Entwicklung befindliche digitale Plattformen und Applikationen sowie zugehörige Geschäfts- und Betreibermodelle, welche Kunststoffverarbeiter untereinander sowie Wertstofferzeuger und -verwerter vernetzen sollen, können künftig höhere Recyclingquoten ermöglichen und ökologische Einsparpotenziale heben.
Der Artikel führt Entwicklungen und Ergebnisse aktueller Forschungsprojekte zu solchen Vernetzungen zusammen, zeigt die aktuelle Situation des werkstofflichen Recyclings von industriellen und gewerblichen Kunststoffabfällen auf und beleuchtet welche Voraussetzungen für eine erfolgreiche Kreislaufführung von industriellen Kunststoffen gegeben sein müssen. Es wird insbesondere analysiert, in welcher Weise digitale Technologien und die durch sie erzielbare Informationstransparenz eine verbesserte Kreislaufwirtschaft bewirken können und in welcher Weise dies Wertschöpfungsnetzwerke räumlich beeinflussen kann.
The Digital Product Passport (DPP) is a concept for collecting and sharing product-related information along the life cycle of a product. DPPs are currently the subject of intense discussion, and various development efforts are being undertaken. These are supported by regulatory activities, especially in the case of the battery passport. The aggregation of product life-cycle data and their respective use, as well as the sharing of these data between companies, entrepreneurs, and other actors in the value chain, is crucial for the creation of a resource-efficient circular economy. Despite the urgent need for such a solution, there is currently little attention given to the digital infrastructure for the creation and handling of the DPPs (i.e., the so-called DPP system). Moreover, there is so far no common understanding of what the requirements for a DPP system are. This is the background and underlying motivation of our paper: we identify the requirements for a DPP system in a structured way, i.e., based on stakeholder involvement and current literature from science and industry. In addition, we compose, categorize, and critically analyze the results, i.e., the list of requirements for DPP systems, in order to identify gaps. Summarized, our research provides insights into the criteria to be considered in the creation of an actual DPP system.
In der Chemiebranche macht sich mittlerweile die Erkenntnis breit, dass sie zukünftig geschlossene Stoffkreisläufe brauchen wird, wenn sie weiter Gewinne machen will. Doch der Weg dahin ist noch ziemlich weit. Deshalb wird es ohne langfristig angelegte und klare gesetzgeberische Vorgaben nicht gehen.