Refine
Year of Publication
Document Type
- Report (131)
- Conference Object (61)
- Contribution to Periodical (35)
- Part of a Book (26)
- Peer-Reviewed Article (22)
- Working Paper (21)
- Book (2)
- Doctoral Thesis (1)
- Lecture (1)
Im Herbst 2001 veröffentlichte Bundeswirtschaftsminister Werner Müller einen viel diskutierten Energiebericht. Neben einer Bestandsaufnahme der deutschen Energie- und Klimapolitik befasst er sich auch mit einer Analyse der zukünftigen Entwicklungsmöglichkeiten des Energiesystems. Dabei steht die Frage im Vordergrund, ob und wenn ja, zu welchem Preis eine über das bisher von der Bundesregierung beschlossene Maß hinausgehende Minderung der CO2-Emissionen möglich ist. Referenzpunkt ist das Ziel, im Jahr 2020 eine CO2-Reduktion von 40 Prozent gegenüber dem Niveau des Jahres 1990 zu erreichen. In seinen Zukunftsaussagen basiert der Energiebericht im Wesentlichen auf einer Untersuchung von Prognos/EWI/Bremer Energieinstitut aus dem Frühjahr 2001. Der Energiebericht will mit dieser Zukunftsbetrachtung einen Beitrag zum energiepolitischen Diskurs leisten und eine intensive Diskussion entfachen. Das Wuppertal Institut stellt sich dieser Aufforderung mit vorliegender Antwort. Dabei sollen die Aussagen und Schlussfolgerungen des Energieberichts kritisch hinterfragt und eigenen Überlegungen gegenübergestellt werden.
Contemporary combined heat and power (CHP) systems are often based on fossil fuels, such as natural gas or heating oil. Thereby, small-scale cogeneration systems are intended to replace or complement traditional heating equipment in residential buildings. In addition to space heating or domestic hot water supply, electricity is generated for the own consumption of the building or to be sold to the electric power grid.
The adaptation of CHP-systems to renewable energy sources, such as solid biomass applications is challenging, because of feedstock composition and heat integration. Nevertheless, in particular smallscale CHP technologies based on biomass gasification and solid oxide fuel cells (SOFCs) offer significant potentials, also regarding important co-benefits, such as security of energy supply as well as emission reductions in terms of greenhouse gases or air pollutants. Besides emission or air quality regulations, the development of CHP technologies for clean on-site small-scale power generation is also strongly incentivised by energy efficiency policies for residential appliances, such as e.g. Ecodesign and Energy Labelling in the European Union (EU). Furthermore, solid residual biomass as renewable local energy source is best suited for decentralised operations such as micro-grids, also to reduce long-haul fuel transports. By this means such distributed energy resource technology can become an essential part of a forward-looking strategy for net zero energy or even smart plus energy buildings.
In this context, this paper presents preliminary impact assessment results and most recent environmental considerations from the EU Horizon 2020 project "FlexiFuel-SOFC" (Grant Agreement no. 641229), which aims at the development of a novel CHP system, consisting of a fuel flexible smallscale fixed-bed updraft gasifier technology, a compact gas cleaning concept and an SOFC for electricity generation. Besides sole system efficiencies, in particular resource and emission aspects of solid fuel combustion and net electricity effects need to be considered. The latter means that vastly less emission intensive gasifier-fuel cell CHP technologies cause significant less fuel related emissions than traditional heating systems, an effect which is further strengthened by avoided emissions from more emission intensive traditional grid electricity generation. As promising result, operation "net" emissions of such on-site generation installations may be virtually zero or even negative. Additionally, this paper scopes central regulatory instruments for small-scale CHP systems in the EU to discuss ways to improve the framework for system deployment.
Least-Cost Planning : Fallstudie Hannover der Stadtwerke Hannover AG ; Zwischenbericht, Anlagenband
(1993)
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. EEW3 analysed the progress made in the implementation of energy efficiency policies in European Member States since the publication of the second National Energy Efficiency Action Plans (NEEAPs) in 2011 by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Results are presented in Country Reports for each of the 28 Member States, the Expert Survey Report, 10 Case Studies presenting outstanding energy efficiency policies in Europe, the Key Policy Conclusions, the project summary report in brochure format and this Feedback Loop Report, which summarises the overall EEW3 portfolio.
The core objective of Energy Efficiency Watch 3 (EEW3) is to establish a constant feedback loop on the implementation of European and national energy efficiency policies and thus enable both compliance monitoring and mutual learning on effective policy making across the EU. The project team applied a mixed-method approach to assess energy efficiency policy developments in EU Member States. It analysed progress of national policies by screening official documents, sought experts' knowledge via an EU-wide survey and has been creating new consultation platforms with a wide spectrum of stakeholders including parliamentarians, regions, cities and business stakeholders. Analysis of the National Energy Efficiency Action Plans (NEEAPs), the expert survey with input from over 1,100 experts on policy ambition and progress in each Member State, as well as 28 Country Reports have been central elements in EEW3. This paper will present the main conclusions and policy recommendations of EEW3. In doing so, it will first summarise the findings of the document analysis based on the 28 Country Reports, showing developments of energy efficiency policies since the second NEEAP in 2011 in a cross-country overview for six sectors. These findings are then contrasted with the experts' perspective on progress in energy efficiency policies in their countries as collected in the EEW survey. Moreover, ten case studies of good practice energy efficiency policies are shown, three of them will be presented in more detail. The paper ends with key policy conclusions for improving the effectiveness of European energy efficiency policies. A key finding is that policy implementation has improved a lot since 2011 but more is needed to achieve the EED Art. 7 and other targets.
Transformative Innovationen : die Suche nach den wichtigsten Hebeln der Großen Transformation
(2021)
Der hier vorliegende Zukunftsimpuls soll den Grundgedanken der Transformativen Innovationen und ihre Notwendigkeit beschreiben sowie erste Kandidaten für solche Transformativen Innovationen aus diversen Arbeitsbereichen des Wuppertal Instituts vorstellen. Er dient vor allem als Einladung, gemeinsam mit dem Wuppertal Institut über solche Innovationen zu diskutieren, die irgendwo zwischen den großen Utopien und kleinen Nischenaktivitäten liegen. Denn es braucht nicht immer den ganz großen Wurf, um Veränderungen in Gang zu setzen.
Kernenergie : Rettung aus der drohenden Klimakatastrophe oder Hemmschuh für effektiven Klimaschutz?
(1996)
Target 2020 : policies and measures to reduce greenhouse gas emissions in the EU ; final report
(2005)
The German climate change programme (2000) identified the residential sector as one of the main sectors in which to achieve additional GHG reductions. Our case study compiles results of existing evaluations of the key policies and measures that were planned and introduced and carries out some own estimates of achievements. We show, which emission reductions and which instruments where planned and what was delivered until 2004.
Legal instruments such as the revised building code were introduced later than planned and their effects will - at least partly - fall behind expectations. Other legal instruments such as minimum energy performance standards for domestic appliances etc. were - in spite of the programme - not implemented yet.
On the other hand, substantial financial incentives were introduced. Especially schemes granting low-interest loans for building renovation were introduced. However tax subsidies for low-energy buildings were phased out.
In general we can conclude from our case study that Germany was not able to compensate for the slower or restricted implementation of legal instruments through the introduction of financial incentives. Particularly the efficient use of electricity has been left aside as almost no further policy action was taken since 2001.
Thus energy efficiency in the residential sector will not deliver the GHG reductions planned for in the German climate change programme until 2005. From our findings we draw conclusions and recommendations towards policy makers: Which lessons are to be learnt and what has to be done in order to fully harness EE potentials in residential sector as planned for 2010?
Based on a comprehensive scenario analysis of the EU's GHG emissions by 2020, we show that the 20% energy savings target set in the Action Plan "Doing more with less" in 2006 is still the most significant and thus indispensable strategy element within an ambitious EU climate and energy strategy targeting at a 30% reduction of GHG emissions by 2020.
The scenario analysis provides a sector by sector projection of potential future energy use and GHG emissions, combined with a detailed policy analysis of the core policies on energy efficiency by the EU and its Member States taken from current research results by the authors and others.
Consequently the paper identifies and quantifies the current implementation deficit in the EU and shows that, despite of sufficient targets, implementation is still significantly lacking in almost all fields of energy efficiency. Some, e.g. transport sector and buildings, are still substantially far from receiving the necessary political impetus. The paper also demonstrates co-benefits of a strong energy efficiency strategy, e.g. the achievability of the targets of the RES directive, which crucially depends on a strong efficiency policy.
We conclude that the efforts of the energy efficiency policy of the EU and its Member States have to be significantly intensfied. As proposed by the EU in case that other developed and key developing countries take up comparable targets in order to fulfil its role in the climate and energy strategy. To achieve this, we offer an analysis of the current weaknesses of EU energy efficiency policy and derive recommendations on how the EU can still reach its targets for 2020.